GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis

Katja Schwarz. Yiyi Liao, Michael Niemeyer, Andreas Geiger

Presented by Vincent Li

Abstract

- A generative model for radiance fields for high-resolution 3D-aware image synthesis from unposed images.
 - Yield a full probabilistic generative model for drawing unconditional random samples
 - Learning from only 2D images without 3D supervision
 - Doesn't need to be retrained for new scene (different from NeRF)
- A patch-based discriminator that samples the image at multiple scales (key to learn high-resolution generative radiance fields efficiently)
- Systematically evaluate our approach on synthetic and real datasets
 - By running a multi-view stereo algorithm (COLMAP) on several outputs to verify 3D consistency

Method Overview

• The scene is represented as a continuous function $g\theta$ that maps a location x and viewing direction d to a color value c and a volume density σ .

Generator

- camera matrix K, camera pose ξ , 2D sampling pattern v and shape/appearance codes $z_s \in R^m/z_a \in R^n$ as input and predicts an image patch P
- K is chosen in a way such that the principle point is in the center of the image

Ray Sampling

Figure 3: **Ray Sampling.** Given camera pose $\boldsymbol{\xi}$, we sample rays according to $\boldsymbol{\nu} = (\mathbf{u}, s)$ which determines the continuous 2D translation $\mathbf{u} \in \mathbb{R}^2$ and scale $s \in \mathbb{R}^+$ of a $K \times K$ patch. This enables us to use a convolutional discriminator independent of the image resolution.

Conditional Radiance Field

Figure 4: Conditional Radiance Field. While the volume density σ depends solely on the 3D point x and the shape code z_s , the predicted color value c additionally depends on the viewing direction d and the appearance code z_a , modeling view-dependent appearance, e.g., specularities.

- Where the network is :)
- In contrast to NeRF, CRF is also conditioned on shape code z_s and z_a in addition to position x and viewing direction d
- σ is computed independently of the view point d and appearance code to disentangle shape and appearance.

Discriminator

- A K x K patch is extracted from the real image using a v ~ p_v (same as generator)
- Then sample the real patch P by querying I at the 2D image coordinates P(u, s) using bilinear interpolation.
- Very similar to PatchGAN however continuous displacement **u** and scale sis allowed while PatchGAN uses s = 1.
- Noted that real image I is not downsampled, but queried using sparse locations to retain high-frequency details

Training and Inference

$$V(\theta,\phi) = \mathbb{E}_{\mathbf{z}_{s}\sim p_{s}, \mathbf{z}_{a}\sim p_{a}, \boldsymbol{\xi}\sim p_{\xi}, \boldsymbol{\nu}\sim p_{\nu}} \left[f(D_{\phi}(G_{\theta}(\mathbf{z}_{s},\mathbf{z}_{a},\boldsymbol{\xi},\boldsymbol{\nu}))) \right] \\ + \mathbb{E}_{\mathbf{I}\sim p_{\mathcal{D}}, \boldsymbol{\nu}\sim p_{\nu}} \left[f(-D_{\phi}(\Gamma(\mathbf{I},\boldsymbol{\nu}))) - \lambda \|\nabla D_{\phi}(\Gamma(\mathbf{I},\boldsymbol{\nu}))\|^{2} \right]$$

• Non-saturating GAN with R1-regularization

(a) Rotation

(b) Elevation

• How do Generative Radiance Fields compare to voxel-based approaches?

	Chairs	Birds	Cars	Cats	Faces
2D GAN [35]	59	24	66	18	15
PLATONICGAN [20]	199	179	169	318	321
HoloGAN [40]	59	78	134	27	25
Ours	34	47	30	26	25
Table 1: FID at image resolution 64^2 pixels.					

• Do 3D-aware generative methods scale to high - resolution outputs?

	Cars			Faces		
	128	256	512	128	256	512
HoloGAN [40]	211	230	_	39	61	_
w/o 3D Conv	180	189	251	31	33	51
Ours	41	71	84	35	49	49
upsampled	_	91	128	_	63	77
sampled	_	74	104	—	50	56

Table 2: **FID** at image resolution 128^2 - 512^2 .

• Should learned projections be avoided?

Figure 6: Viewpoint Interpolations on Faces and Cars at image resolution 256² pixels for HoloGAN [40] (HGAN), HoloGAN w/o 3D Conv (HGAN **XX**) and our approach (Ours).

• Continued

Method	MMD-CD
Ours	0.044
HGAN	0.109
HGAN 💥	0.092

Figure 7: **3D Reconstruction** from synthesized images at resolution 256². Each pair shows one of the generated images and the 3D reconstruction from COLMAP [61].

Table 3: **Reconstruction Accuracy** on Cars for 100 COLMAP reconstructions compared to their closest shapes in the ground truth in terms of MMD [1] measuring chamfer distance (CD).

• Are Generative Radiance Fields able to disentangle shape from appearance?

Figure 8: Disentangling Shape / Appearance. Results from our model on Cars, Chairs and Faces.

Limitation

• Simple scenes with single objects